31 research outputs found

    Ensemble Fractional Sensitivity: A Quantitative Approach to Neuron Selection for Decoding Motor Tasks

    Get PDF
    A robust method to help identify the population of neurons used for decoding motor tasks is developed. We use sensitivity analysis to develop a new metric for quantifying the relative contribution of a neuron towards the decoded output, called “fractional sensitivity.” Previous model-based approaches for neuron ranking have been shown to largely depend on the collection of training data. We suggest the use of an ensemble of models that are trained on random subsets of trials to rank neurons. For this work, we tested a decoding algorithm on neuronal data recorded from two male rhesus monkeys while they performed a reach to grasp a bar at three orientations (45°, 90°, or 135°). An ensemble approach led to a statistically significant increase of 5% in decoding accuracy and 25% increase in identification accuracy of simulated noisy neurons, when compared to a single model. Furthermore, ranking neurons based on the ensemble fractional sensitivities resulted in decoding accuracies 10%–20% greater than when randomly selecting neurons or ranking based on firing rates alone. By systematically reducing the size of the input space, we determine the optimal number of neurons needed for decoding the motor output. This selection approach has practical benefits for other BMI applications where limited number of electrodes and training datasets are available, but high decoding accuracies are desirable

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe

    Improving long term myoelectric decoding, using an adaptive classifier with label correction

    No full text
    This study presents a novel adaptive myoelectric decoding algorithm for control of upper limb prosthesis. Myoelectric decoding algorithms are inherently subject to decay in decoding accuracy over time, which is caused by the changes occurring in the muscle signals. The proposed algorithm relies on an unsupervised and on demand update of the training set, and has been designed to adapt to both the slow and fast changes that occur in myoelectric signals. An update in the training data is used to counter the slow changes, whereas an update with label correction addresses the fast changes in the signals. We collected myoelectric data from an able bodied user for over four and a half hours, while the user performed repetitions of eight wrist movements. The major benefit of the proposed algorithm is the lower rate of decay in accuracy; it has a decay rate of 0.2 per hour as opposed to 3.3 for the non adaptive classifier. The results show that, long term decoding accuracy in EMG signals can be maintained over time, improving the performance and reliability of myoelectric prosthesis.by Sarthak Jain and Girish Singha

    Ensemble Fractional Sensitivity: A Quantitative Approach to Neuron Selection for Decoding Motor Tasks

    No full text
    A robust method to help identify the population of neurons used for decoding motor tasks is developed. We use sensitivity analysis to develop a new metric for quantifying the relative contribution of a neuron towards the decoded output, called "fractional sensitivity." Previous model-based approaches for neuron ranking have been shown to largely depend on the collection of training data. We suggest the use of an ensemble of models that are trained on random subsets of trials to rank neurons. For this work, we tested a decoding algorithm on neuronal data recorded from two male rhesus monkeys while they performed a reach to grasp a bar at three orientations (45 • , 90 • , or 135 • ). An ensemble approach led to a statistically significant increase of 5% in decoding accuracy and 25% increase in identification accuracy of simulated noisy neurons, when compared to a single model. Furthermore, ranking neurons based on the ensemble fractional sensitivities resulted in decoding accuracies 10%-20% greater than when randomly selecting neurons or ranking based on firing rates alone. By systematically reducing the size of the input space, we determine the optimal number of neurons needed for decoding the motor output. This selection approach has practical benefits for other BMI applications where limited number of electrodes and training datasets are available, but high decoding accuracies are desirable

    Fabrication and characterization of Al-matrix composites reinforced with amino-functionalized carbon nanotubes

    No full text
    We report the fabrication of Al-matrix composites reinforced with amino-functionalized carbon nanotubes (fCNTs) using powder metallurgy process. Functionalization of the nanotubes was carried out by ball milling multiwalled carbon nanotubes (MWCNTs) in the presence of ammonium bicarbonate. It has been found that the mechanical properties of Al-fCNT composites were much superior to the composites fabricated using non-functionalized or acid functionalized carbon nanotubes. The enhancement in mechanical properties in these composites are attributed mainly to the better and homogeneous dispersion of fCNT in Al matrix as compared to non-functionalized or acid functionalized carbon nanotubes and the formation of a strong interfacial bonding between fCNT and Al matrix leading to an efficient load transfer from Al matrix to fCNT following high-resolution transmission electron microscopy
    corecore